User-Defined Redundancy in Web Archives
نویسندگان
چکیده
Web archives are valuable resources. However, they are characterized by a high degree of redundancy. Not only does this redundancy waste computing resources, but it also deteriorates users’ experience, since they have to sift through and weed out redundant content. Existing methods focus on identifying near-duplicate documents, assuming a universal notion of redundancy, and can thus not adapt to userspecific requirements such as a preference for more recent or diversely opinionated content. In this work, we propose an approach that equips users with fine-grained control over what they consider redundant. Users thus specify a binary coverage relation between documents that can factor in documents’ contents as well as their meta data. Our approach then determines a minimumcardinality cover set of non-redundant documents. We describe how this can be done at scale using MapReduce as a platform for distributed data processing. Our prototype implementation has been deployed on a real-world web archive and we report experiences from this case study.
منابع مشابه
Redundancy Control in Web Archives
Large scale text collections like web archives evolve over time. However, the addition of new documents does not always add novel content, but also introduces contents that are copied, enriched, or recompiled from already existing documents. Thus, such collections are characterized by a lot of redundant content. Redundant documents waste storage space, make content analysis difficult and decrea...
متن کاملتشخیص ناهنجاری روی وب از طریق ایجاد پروفایل کاربرد دسترسی
Due to increasing in cyber-attacks, the need for web servers attack detection technique has drawn attentions today. Unfortunately, many available security solutions are inefficient in identifying web-based attacks. The main aim of this study is to detect abnormal web navigations based on web usage profiles. In this paper, comparing scrolling behavior of a normal user with an attacker, and simu...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013